为什么没有东西能够超过光速?

小智雅汇   2017-10-13 09:11

We are told that nothing can travel faster than light. This is how we know it is true.

It was September 2011 and physicist Antonio Ereditato had just shocked the world. The announcement he had made promised to overturn our understanding of the Universe. If the data gathered by 160 scientists working on the OPERA project were correct, the unthinkable had been observed.

2011年9月,物理学家安东尼奥伊·雷迪塔托震惊了世界。他宣布的消息将彻底改变我们对宇宙的理解方式。如果参与OPERA项目的160名科学家收集的数据正确的话,说明我们已经成功观测到了不可能发生的事情。

Particles – in this case, neutrinos – had travelled faster than light.

According to Einstein's theories of relativity, this should not have been possible. And the implications for showing it had happened were vast. Many bits of physics might have to be reconsidered.

这件事就是:粒子(这里指的是中子)的运动速度超过了光速。

根据爱因斯坦的相对论,这应该是不可能发生的。假如这件事成真,它的影响也十分巨大,许多物理学知识都必须予以重新考虑。

Although Ereditato said that he and his team had "high confidence" in their result, they did not claim that they knew it was completely accurate. In fact, they were asking for other scientists to help them understand what had happened.

虽然伊雷迪塔托和他的团队称,他们对自己的研究结果抱有“高度自信”,但他们从未说过自己的结果是完全精确的。事实上,他们还邀请了其他科学家来帮助他们弄清究竟发生了什么事情。

In the end, it turned out the OPERA result was wrong. A timing problem had been caused by a poorly connected cable that should have been transmitting accurate signals from GPS satellites.

There was an unexpected delay in the signal. As a consequence, the measurements of how long the neutrinos took to travel the given distance were off by about 73 nanoseconds, making it look as though they had whizzed along more quickly than light could have done.

最后他们发现,OPERA项目的结果是错误的。由于一处电缆接触不良,从GPS卫星传来的信号出现了延迟。结果中子的运动时间缩短了73秒,看上去就好像比光速还快一样。

Despite months of careful checks prior to the experiment, and plentiful double-checking of the data afterwards, this time the scientists got it wrong. Ereditato resigned, though many pointed out that mistakes like these happen all the time in the hugely complex machinery of particle accelerators.

虽然科学家们在实验之前进行了好几个月的细致检查,在实验之后也进行了反复核查,但这一次,科学家们还是犯了错误。虽然很多人指出,在粒子加速器这么复杂的机器中,这样的错误总会发生,但伊雷迪塔托还是引咎辞职了。

Why was it such a big deal to suggest – even as a possibility – that something had travelled faster than light? And are we really sure that nothing can?

为什么人们都将“某种东西比光速还快”这件事看得这么严重呢?我们真就那么确定没有东西能超过光速吗?

为什么没有东西能够超过光速?

We cannot go as fast as light ↑

Let's take the second of those questions first. The speed of light in a vacuum is 299,792.458 km per second – just shy of a nice round 300,000km/s figure. That is pretty nippy. The Sun is 150 million km away from Earth and light takes just eight minutes and 20 seconds to travel that far.

让我们先来看看第二个问题。真空中的光速是每秒299792.458公里,约等于每秒30万公里,速度非常之快。太阳距地球约1.5亿公里,光只需要8分20秒就能跑过这段距离。

Can any of our own creations compete in a race with light? One of the fastest human-made objects ever built, the New Horizons space probe, passed by Pluto and Charon in July 2015. It has reached a speed relative to the Earth of just over 16km/s, well below 300,000km/s.

我们造出来的东西能与光速相提并论吗?新视野号空间探测器是人类造出的速度最快的东西之一,相对地球的运行速度只有每秒钟16公里,比每秒钟30万公里差了一大截。

However, we have made tiny particles travel much faster than that. In the early 1960s, William Bertozzi at the Massachusetts Institute of Technology experimented with accelerating electrons at greater and greater velocities.

Because electrons have a charge that is negative, it is possible to propel – or rather, repel – them by applying the same negative charge to a material. The more energy applied, the faster the electrons will be accelerated.

但粒子的速度可以比这快得多。上世纪60年代初,麻省理工学院的威廉·贝托齐开展了一项实验,不断给电子加速,使电子的速度越来越快。由于电子带负电荷,只要使一块材料带上同样的负电荷,就能把电子向前推出去。施加的能量越高,电子的速度也就越快。

You might imagine that you just need to increase the energy applied in order to reach the required speed of 300,000km/s, but it turns out that it just is not possible for electrons to move that fast. Bertozzi's experiments found that using more energy did not simply cause a directly proportional increase in electron speed.

Instead, he needed to use ever-larger amounts of additional energy to make ever-smaller differences to the speed the electrons moved. They got closer and closer to the speed of light but never quite reached it.

你可能会以为,要想达到每秒钟30万公里的速度,只要增加所施加的能量就可以了。但我们发现,电子是不可能达到那么高的运行速度的。贝托齐的实验显示,增加能量之后,电子的运行速度并不会简单地成比例增加。到了后来,就算施加了大量能量,电子的速度也只能加快一点点。这一速度会不断接近光速,但永远无法真正追上光速。

Imagine travelling towards a door in a series of moves, in each of which you travel exactly half the distance between your current position and the door. Strictly speaking, you will never reach the door, because after every move you make you still have some distance still to travel. That is the kind of problem Bertozzi encountered with his electrons.

But light is made up of particles called photons. Why can these particles travel at the speed of light when particles like electrons cannot?

想象一下,你正在朝一扇门走过去,每次走的长度都是你现在和门之间距离的一半。严格来说,你永远也走不到门跟前,因为每走一步之后,你和门之间仍然存在一定距离。贝托齐的电子加速实验遇到的也是类似的问题。但光也是由一种叫做光子的粒子构成的。为什么这些粒子就能达到光速,电子之类的粒子就不行呢?

为什么没有东西能够超过光速?

New Horizons visited Pluto in 2015

"As objects travel faster and faster, they get heavier and heavier – the heavier they get, the harder it is to achieve acceleration, so you never get to the speed of light," says Roger Rassool, a physicist at the University of Melbourne, Australia.

"A photon actually has no mass," he says. "If it had mass, it couldn't travel at the speed of light."

“物体的运动速度越快,它就会变得越重;而物体变得越重,要想加速也就越难,因此你永远不可能达到光速。”墨尔本大学的一名物理学家罗杰·拉索尔说道,“光子实际上是没有质量的。如果它有质量,也就不可能以光速运行了。”

Photons are pretty special. Not only do they have no mass, which gives them free reign when it comes to zipping about in vacuums like space, they do not have to speed up. The natural energy they possess, travelling as they do in waves, means that the moment they are created, they are already at top speed.

光子是一种非常特殊的粒子。不仅因为它们没有质量,让它们在宇宙这样的真空中可以无拘无束地自由穿梭,还因为它们根本不需要加速。光的能量借助波的形式传播,这意味着从光子诞生的那一刻起,它就已经达到了最高速度。

In fact, in some ways it makes more sense to think of light as energy rather than as a flow of particles, though truthfully it is – a little confusingly – both.

事实上,在一些方面把光想像成能量而不是粒子的流动更能被理解,虽然实际上―有点困惑―它两者都是。

Still, light sometimes appears to travel more slowly than we might expect. Although internet technicians like to talk about communications travelling at "the speed of light" through optical fibres, light actually travels around 40% slower through the glass of those fibres than it would through a vacuum.

不过,光有时似乎传播得比我们认为的要慢一些。虽然互联网技术人员喜欢说信息“以光速”在光纤中传播,但光在光纤的玻璃中传播的速度其实比在真空中慢40%。

In reality, the photons are still travelling at 300,000km/s, but they are encountering a kind of interference caused by other photons being released from the glass atoms as the main light wave travels past. It is a tricky concept to get your head around, but it is worth noting.

Similarly, special experiments with individual photons have managed to slow them down by altering their shape.

事实上,这些光子的运行速度仍然是每秒钟30万公里,但在光波穿过玻璃时,会从玻璃原子中释放出其它的光子,对之前的光子造成一定干扰。这一点可能很难理解,但值得我们去注意一下。与之类似,科学家在实验中通过改变光子的形状,成功减慢了单个光子的速度。

为什么没有东西能够超过光速?

Optical fibers carry information ↑

Still, for the most part it is fair to say that light travels at 300,000km/s. We really have not observed or created anything that can go quite that quickly, or indeed more quickly. There are a few special cases, mentioned below, but before those, let's tackle that other question. Why is it so important that this speed of light rule be so strict?

不过,在绝大多数情况下,我们还是可以说光速就是每秒30万公里。我们还未观察到过、或者造出过能与光速媲美、甚至超过光速的东西。下文中提到了一些特殊的案例,但在此之前,让我们先来解决另一个问题:为什么光速这么重要呢?

The answer lies, as so often in physics, with a man named Albert Einstein. His theory of special relativity explores many of the consequences of these universal speed limits.

One of the important elements in the theory is the idea that the speed of light is a constant. No matter where you are or how fast you are travelling, light always travels at the same speed.

But that creates some conceptual problems.

答案与一位叫做阿尔伯特爱因斯坦的男人有关。他的狭义相对论对这一速度上限引发的许多后果进行了探讨。该理论最重要的观点之一是,光速是一个常量。无论你身在何处,无论你速度多快,光传播的速度始终保持不变。但这也带来了一些概念上的问题。

Imagine shining light from a torch up to a mirror on the ceiling of a stationary spacecraft. The light will shine upwards, reflect off the mirror, and come down to hit the floor of the spacecraft. Let's say the distance travelled is 10m.

想象一下这样的场景:手电筒的光柱投射到一艘静止的宇宙飞船的天花板上。光线先是朝上,被镜子反射回来,然后投射到地板上。假设光线经过的距离为10米。

Now let's imagine that the spacecraft begins travelling at a hair-raising speed, many thousands of kilometres per second.

When you shine the torch again, the light will still seem to behave as before: it will shine upwards, hit the mirror, and bounce back to hit the floor. But in order to do so the light will have to travel diagonally rather than just vertically. After all, the mirror is now moving quickly along with the spacecraft.

然后再想象一下,宇宙飞船开始以超高速运行,速度为每秒数千、甚至数万公里。你打开手电筒之后,光线的运动方式看上去和之前一样:先是往上走,然后被镜子反射回来,投射到地板上。但由于镜子此时正和宇宙飞船一起高速运行,要实现这样的效果,光线的运动轨迹必须倾斜于地面,而不是垂直于地面。

The distance the light travels therefore increases. Let's imagine it has increased overall by 5m. That is 15m in total, instead of 10m.

因此光线经过的距离比之前增加了。假设这段距离增加了5米,光线经过的总距离就变成了15米,而不是之前的10米。

And yet, even though the distance has increased, Einstein's theories insist that the light is still travelling at the same speed. Since speed is distance divided by time, for the speed to be the same but the distance to have increased, time must also have increased.

不过,虽然这段距离增加了,根据爱因斯坦的理论,光速仍然是不变的。速度等于距离除以时间,既然速度不变,距离增加,时间应该也增加了才对。

Yes, time itself must have got stretched. That sounds wacky, but it has been proved experimentally.

不错,时间本身也被拉长了。这听上去很异想天开,但实验已经证实了这一点。

为什么没有东西能够超过光速?

Time can slow down or speed up ↑

It is a phenomenon known as time dilation. It means time travels slower for people travelling in fast-moving vehicles, relative to those who are stationary.

这种现象名叫时间膨胀效应。这意味着对于在高速运行的汽车中的人来说,时间过得比静止时要慢一些。

For example, time runs 0.007 seconds slower for astronauts on the International Space Station, which is moving at 7.66 km/s relative to Earth, compared to people on the planet.

例如,国际空间站相对地球的运动速度是每秒7.66公里,对于宇航员来说,时间比地球上慢了0.007秒。

Things get interesting for particles, like the electrons mentioned above, that can travel close to the speed of light. For these particles, the degree of time dilation can be great.

而套用到粒子身上,事情就更有趣了。比如上文提到的电子,它们可以以接近光速的速度运行。对于这些粒子来说,时间膨胀效应就更明显了。

Steven Kolthammer, an experimental physicist at the University of Oxford in the UK, points to an example involving particles called muons.

牛津大学的一名实验物理学家史蒂文科尔斯海默用渺子举例说明了这一点。

Muons are unstable: they quickly fall apart into simpler particles. So quickly, in fact, that most muons leaving the Sun should have decayed away by the time they reach the Earth. But in reality muons arrive at Earth from the Sun in great numbers. This was something scientists long found difficult to understand.

渺子十分不稳定,很快就会分裂成其它更简单的粒子。按照它们的衰变速度,大部分渺子在离开太阳之后,等到抵达地球时,就应该已经衰变了才对。但事实上,仍有大批渺子能成功抵达地球。长时间以来,科学家一直对这一点感到大惑不解。

"The answer to this puzzle is that the muons are generated with so much energy that they're moving at velocities very near the speed of light," says Kolthammer. "So their sense of time, if you will, their internal clock, actually runs slow."

“原因是渺子在诞生时的能量极其巨大,因此渺子能够以接近光速的速度运行,”科尔斯海默说道,“所以对于它们而言,时间其实放慢了不少。”

The muons were "kept alive" longer than expected, relative to us, thanks to a real, natural bending of time.

渺子之所以能“存活”得比我们以为的更久,靠的就是实际存在的、天然的时间弯曲效应。

为什么没有东西能够超过光速?

Light travels from the Sun to Earth ↑

When objects move quickly relative to other objects, their length contracts as well. These consequences, time dilation and length contraction, are both examples of how space-time changes based on the motion of things – like you, me or a spacecraft – that have mass.

当物体相对于其它物体的运动速度更快时,它们的长度也会收缩。时间膨胀效应和尺缩效应都是时空根据物体的运动状态发生改变的例子。比如你,比如我,比如宇宙飞船,物体只要有质量,就会出现这些现象。

Crucially, as Einstein said, light does not get affected in the same way – because it has no mass. That is why it is so important that all of these principles go hand-in-hand. If things could travel faster than light, they would disobey these fundamental laws that describe how the Universe works.

但爱因斯坦指出,最关键的是,光不会受到这些效应的影响,因为光没有质量。正是因为这一点,这些定律之间的统一才那么重要。如果有什么东西的运动速度超过了光速,它们就会与宇宙运作的基本法则相违背。

That sums up the key principles. At this point, we can consider a few exceptions and caveats.

For one thing, while nothing has ever been observed travelling faster than light, that does not mean it is not theoretically possible to break this speed limit in very special circumstances.

但也有一些例外的现象。首先,虽然我们还没观察到有什么东西能超过光速,但这并不意味着,在非常特殊的情况下,理论上是无法打破光速的限制的。

Take, for instance, the expansion of the Universe itself. There are galaxies in the Universe moving away from one another at a velocity greater than the speed of light.

Another interesting situation concerns particles that seem to be expressing the same properties at the same time, no matter how far apart they are.

This is called "quantum entanglement". In essence, a photon will flip back and forth between two possible states at random – but the flips will exactly mirror the flipping of another photon somewhere else, if the two are entangled.

宇宙膨胀就是一个例子。宇宙中有一些星系,它们从彼此身边逃离的速度就超过了光速。另一个有趣的例子则与粒子有关。这些粒子无论相隔多远,似乎都能同时表达出相同的特性。这一现象叫做“量子纠缠”。从本质上来说,光子可以在两种状态间随机转换,但如果两个光子之间存在量子纠缠的话,其中一个光子的状态将恰好与另一处的光子完全相同。

Two scientists each studying their own photon will therefore get the same results at the same time, faster than the speed of light.

However, in both these examples it is crucial to note that no information is travelling faster than the speed of light between two entities. We can calculate the Universe's expansion, but we cannot observe any faster-than-light objects in it: they have disappeared from view.

As for the two scientists with their photons, while they might achieve the same result simultaneously, they could not confirm the fact with each other any more quickly than light could travel between them.

因此,如果两名科学家各负责观察一个光子,他们就能同时得到相同的结果,而这一速度是超过了光速的。不过,在上述两个例子中,我们必须注意到,信息在两个实体之间传播的速度是无法超过光速的。我们可以计算宇宙的膨胀速度,但我们无法在其中观察到任何超过光速运行的物体,就好像它们从我们的视线中消失了一样。至于那两名研究光子的科学家,虽然他们能同时得到相同的结果,但他们向对方确认这一事实的速度也不可能超过光速。

为什么没有东西能够超过光速?

Galaxies are flying away from us ↑

"This gets us out of any problems, because if you are able to send signals faster than light you can construct bizarre paradoxes, under which information can somehow go backwards in time," says Kolthammer.

There is yet another possible way in which faster-than-light travel is technically possible: rifts in space-time itself that allow a voyager to escape the rules of normal travel.

“这让我们避免了各种棘手的问题,因为如果你发射信号的速度超过光速的话,就可能引发一些诡异的悖论,让信息在时间上出现了倒退。”科尔斯海默说道。不过,从技术层面来讲,还有另一种方法能实现超光速运动:利用时空中本身存在的缝隙,从而避免受到普通运动法则的牵制。

Gerald Cleaver at Baylor University in Texas has considered the possibility that we might one day build a faster-than-light spacecraft. One of the ways to do this might be to travel through a wormhole. These are loops in space-time, perfectly consistent with Einstein's theories, which could allow an astronaut to hop from one bit of the Universe to another via an anomaly in space-time, a sort of cosmic shortcut.

德州贝勒大学的杰拉德克利佛对制造超光速宇宙飞船的可行性进行了研究。一种方法是穿越虫洞。时空中存在一些环状回路,这与爱因斯坦的理论是完全一致的。宇航员可以利用这些捷径,从宇宙中的某一处地方直接跳到另一处去。

The object travelling through the wormhole would not exceed the speed of light, but it could theoretically reach a certain destination faster than light could if it took a "normal" route.

But wormholes might not be available for space travel. What if instead you actively distorted space-time in a controlled way, to travel faster than 300,000km/s relative to someone else?

物体在虫洞中运行的速度不会超过光速,但从理论上来说,它到达目的地的时间的确比光走正常路线所需的时间要短。但我们也许无法利用虫洞进行空间旅行。那么,我们能否以某种可控的方式主动使时空发生弯曲,从而使相对的运动速度超过光速呢?

为什么没有东西能够超过光速?

Wormholes would be handy, if they exist ↑

Cleaver has investigated an idea known as an "Alcubierre drive", proposed by theoretical physicist Miguel Alcubierre in 1994. Essentially, it describes a situation in which space-time is squashed in front of a spacecraft, pulling it forward, while space-time behind the craft is expanded, creating a pushing effect.

克利佛对一种名为“曲速引擎”的概念进行了研究,这一概念是理论物理学家米格尔·阿库别瑞于1994年提出的。从根本上来说,它描述的是这样一种情境:宇宙飞船前方的时空会收缩,将宇宙飞船向前拉去,而与此同时,飞船后方的时空则会膨胀,产生推动效应。

"But then," says Cleaver, "there's the issues of how to do that, and how much energy it's going to take."

In 2008, he and graduate student Richard Obousy calculated some of the energies involved.

"We worked out that, if you assume a ship that's about 10m x 10m x 10m – you're talking 1,000 cubic metres – that the amount of energy it would take to start the process would need to be on the order of the entire mass of Jupiter."

“但问题是,我们怎样才能实现这一点呢?实现它又需要多大的能量呢?”克利佛说道。2008年,克利佛和他手下的研究生理查德·奥伯塞对所需的能量进行了计算。“我们发现,假设飞船大小为10米*10米*10米、即总体积为1000立方米的话,光是启动这一过程所需的能量数量级就与木星的质量相当。”

After that, the energy would have to continue being provided constantly in order to ensure the process did not fail. No-one knows how that would ever be possible, or what the technology to do it would look like.

"I don't want to be misquoted centuries from now for predicting it would never come about," says Cleaver, "but right now I don't see solutions."

Faster-than-light travel, then, remains a fantasy at the moment.

而在启动之后,我们还需要不断供应能量,保证这一过程不会中断。没人知道我们要怎样才能做到这一点,也没人知道这需要什么样的技术。“我可不想预言说这永远不可能成真,结果被后人诟病数百年,”克利佛说道,“但就目前而言,我真不知道怎样才能做到这一点。”因此就现在来说,超光速旅行依然如神话般遥不可及。

But while that may sound disappointing, light is anything but. In fact, for most of this article we have been thinking in terms of visible light. But really light is much, much more than that.

不过先别失望。在本文中,我们考虑的主要是可见光。但事实上,真正的光比这要宽泛得多。

为什么没有东西能够超过光速?

Visible light is only part of the electromagnetic

Everything from radio waves to microwaves to visible light, ultraviolet radiation, X-rays and the gamma rays emitted by decaying atoms – all of these fantastic rays are made of the same stuff: photons.

从无线电波到微波,再到可见光、紫外线、X射线和原子衰变时释放的伽马射线,这些神奇的射线都是由同一种物质组成的——光子。

The difference is the energy, and therefore their wavelength. Collectively these rays make up the electromagnetic spectrum. The fact that radio waves, for instance, travel at the speed of light is enormously useful for communications.

In his research, Kolthammer builds circuitry that uses photons to send signals from one part of the circuit to another, so he is well placed to comment on the usefulness of light's awesome speed.

它们之间的区别在于能量和波长的不同。这些射线加起来,就构成了完整的电磁光谱。无线电波能以光速传播,这对于通讯的用处非常巨大。科尔斯海默在他的研究中搭建了一个电路系统,用光子从电路的一部分向另一部分发射信号。因此他在光速的用途上很有发言权。

"The idea that we've built the infrastructure of the internet for example and even before that, radio, based on light, certainly has to do with the ease with which we can transmit it," he points out.

He adds that light acts as a communicating force for the Universe. When electrons in a mobile phone mast jiggle, photons fly out and make other electrons in your mobile phone jiggle too. It is this process that lets you make a phone call.

“现在的互联网和以前的无线电都是这样的例子,光速为我们提供了巨大的便利。”他指出。科尔斯海默还补充说,光在宇宙中还起到了沟通的作用。当一部手机中的电子振动时,便会释放出光子,让另一部手机中的电子也开始振动。你打电话的时候,就会经历这样的过程。

The jiggling of electrons in the Sun also emits photons – at fantastic rates – which, of course, produces the light that nourishes life on Earth.

Light is the Universe's broadcast. That speed – 299,792.458 km/s – remains reassuringly constant. Meanwhile, space-time is malleable and that allows for everyone to experience the same laws of physics no matter their position or motion.

太阳中的电子振动时也会释放出光子,正是它们产生的光线孕育了地球万物。光就像宇宙中的广播节目。光速为每秒钟299792.458公里,这一速度始终保持不变。并且,时空还具有延展性,无论人们身在何方,无论他们正处于怎样的运动状态,每个人都遵循着相同的物理法则。

Who would want to travel faster than light, anyway? The show it puts on is just too good to miss.

不过,谁会愿意运动得比光速还快呢?那场景一定太美,让人不容错过。

By Chris Baraniuk

内容推荐
更多阅读

· 王者荣耀皮肤销量最低排名 售价2888点券 天美想钱想疯了

· 如何评价2017年的大黑马《掠食》?反正我已经玩得停不下来

· 王者荣耀的新晋一姐,按这种方法打胜率绝对有保证

· 这可能是最正的厦门味道

· 情感故事:她改嫁那一天,除了她自己“笑”,别人都哭了

· 民间故事:牧童和银矿!他每天出去放牛,都能带回一块银子!

· 营收增5.85%净利润暴降1312.93%,大东南严重肾亏

· 有一种奢华叫金星的家——“金府”,年租金百万,鲁豫都羡慕不已

· 气候变化研究及观测计划将提高应对气候变化能力

· 哪些强大的基因是孩子100%会遗传到的?

· 吃着药血糖还飙升?三餐一定没吃对!这样吃,血糖降一半~

· 54.人性禁岛

· 关注丨灵武21家矿山被通报,涉嫌越界开采!

· 石油工人饭碗要遭抢?快来看看机器人在石油业的逆天应用

· 忽悠还是真有此事,这个方法清积碳靠谱吗?

· 九阴真经天罗舞心得篇 萌妹子全面解析

· 千古之谜:历史上杨坚真的是被杨广给谋杀的么?——杨坚之死始末

· 世界上最长寿的人,活了256岁,9个皇帝加起来都熬不过他

· 其它宇宙存在的证据?科学家发现重力正在逃逸到额外的维度!

· 这是一间怎样的食堂,为何马云、李连杰都来这儿吃小笼包?

· 深圳的十个最美书吧

· 故事:女子久不怀孕,公公提出一个无理要求,被儿媳妇怒骂不要脸

· 离婚企划书(民间故事)

· 民间故事:填了老河道盖房,风水先生说压了龙尾不吉,这家不信邪

· 银河护卫队2一不小心就被口哨飞箭帅气蓝色大叔勇度圈粉了!帅!

· 中国快递速度全球最佳 “当日达” 这种东西连美国人都没见过

· 每体:巴萨有意比托洛,塞维利亚要价四千万

· 新闻分析:美俄斗或和 中东是关键

· 9000万年前恐龙宝宝化石确定为新物种 在河南发现曾流失美国

· 伽马射线暴的威力到底有多大,大部分外星生命已经死于其下

· 量子计算机是什么,它究竟有什么用?

· 美味到极致的豆腐做法,蛋白质丰富,好吃到连盘子都能吃掉

· 医生主动告诉孕妇胎儿是女孩,众人愤怒,得知真相却齐齐点赞!

· 渐消朱颜 欲语离情

· 长城汽车(02333)委任魏建军为董事长 王凤英为副董事长

· 或裁员50% 乐视体育又回到了原点

· 力挺央视!所有的国产剧都不该拍过40集!

· 永骏国际控股(08187)一季度净亏损扩大至437.1万港元 怪欧洲恐袭

· 中国造出一款能飞九千米的直升机,解放军赞其有跨时代意义

· 中新社发布两大创意产品 用歌曲游戏诠释“一带一路”

· 你绝对没看过的三个鬼故事!

· 345 月下

· 父亲患病母亲出走,众人助聊城小曼纯圆求学梦

· 他是明朝最懒皇帝,陵墓发掘时怪事不断,参与发掘者结局凄惨

· 宫内节育器的扭曲历史

· 资深教育专家告诫:与孩子相处,“相较”不如“从命”

· 疼自己,才是最好的承诺

· 陈羽凡希望狗仔不要随意侵犯他与儿子的生活,网友:元宝最幸福

· 这一晚,巴萨众将会成为穆帅意料之外的支持者

· 地理位置最坏的军事强国,前后左右都是强邻,比中国还恶劣

· 洪秀全三天两头写歪诗 驾驭治理女人的攻略

· 一位家长的后悔自白:假如可以重来,我一定会好好爱我的孩子!

· 穿越风云是非多

· 新疆5.5级地震致1.2万人受灾 午间再次发生4.2级地震

· 因为经常补贴娘家失去爱的人,她成了剩女后悔莫及!

· E语中的 4月新能源汽车销量点评

· 战舰少女R舰娘实力排行 你游也有节奏榜

· 甄嬛传端妃刚当上皇贵妃就送了甄嬛一个大礼,皇后彻底成了寡人

· 偏僻小岛上的3尺矮人

· 波动大的高血压,怎样才能控制好?

· 女人有趣,比美貌重要

· 批评国际足联成政治正确?因凡蒂诺怒怼记者报道

· 谷歌要放弃安卓系统?小米华为早有应对!

· 日本学者联名呼吁政府抓住“一带一路”合作机遇

· 在迪拜,拿到破旧的钱或假币怎么办?

· 战舰少女R活动前惯例 最新封神榜名单出炉

· 鑫森科技|当两个“黑洞”合并,吞噬能力会加强吗?会形成什么?

· 太阳能最高级的利用方式

· 利用蛇纹石制成的无毒天然矿电池问世,或将完全淘汰石墨

· 羊肚菌的形态特征及其种类

· 微软软件质量赶不上Google!这就是为什么

· 二战日本联合舰队战时建制与整编重组的无奈

· 妩媚的南越女兵:为何美国保不住 全套美械的南越?

· 大学门口被小吃车围堵,美女帅哥排队买,是食堂饭贵还是吃腻了

· 驰骋赛场之前,我们为C4L定制了一套刹车

· 讲述自己的故事|边防军人都是离星星很近,离家很远

· 世界上最快的相机可拍下光移动的影像

· 高血压用药,这个错误绝对不能犯!丨药师有话说

· 只有,你懂

· 安倍与东京都知事小池百合子会面 商讨2020年奥运会事宜

· 未婚先孕男方又不愿担责 女青年情绪失控在商场大哭

· 拿到500万的董路和乐播足球,对话中超主帅拿佩工开刀

· 罗杰斯:索兰克天赋异禀;凯尔特人会是很好的下家

· 奥沙利文揭父亲入狱真相:冤屈的谋杀案,不服被判18年

· 在中国出售泰国三艘潜艇之际,盘点影史上最好看的五部潜艇电影

· 我的世界超能力Mod能量矿物详解

· 宇宙微波背景辐射从未消失之谜团

· 酿酒作坊如何做大!

· 毛三的故事

· 喜欢吗,这些富有深意而又不俗套的句子,喜欢就拿去好了

· 这些句子很短,但句句入心(精辟)

· 德国总理默克尔与北约秘书长斯托尔滕贝格举行联合记者会

· 为帮“筹集”路费 南京一男子打电话谎称堂哥欠款

· 明星女儿被诅咒,王诗龄油画被质疑遗像,待甜馨的手段更可恶?

· “一带一路”来了,我们准备好了,你准备好了吗?(之二)

· 女星10年前的发型!范冰冰,baby,颜高都直接丑哭!

· 腾讯等巨头悄然发力 体育游戏缘何屡获资本青睐

· 11773晚高峰 网易公布2017财年Q1财报 网游收入突破百亿 手游占比攀升

· 什么是宇宙膨胀说,究竟宇宙是否在膨胀?

· 在农村参加葬礼有三大禁忌,犯着会倒霉三年

· 千亿市值的港股蓝筹遇“空袭” 瑞声科技下跌10.45%

· 你戴起眼镜还真的像个人

· 打败张国荣获金马影帝,今浪迹各种烂片不能自拔,却依旧备受赞誉

· 第一季度手机销量排行,华为+荣耀不敌OPPO+vivo

· 桑切斯进球后拍打队徽,枪迷推特反应激动不已

· 王者荣耀强势崛起引发挖角大战,哪些主播才是真正的香饽饽?

· 月球曾今差点被炸毁,那些吟月诗只能凭想象了

· 雨落,花依然

· 唯美语录,人情倦怠至极,厌肤浅庸碌

· 姚老板挺不住了?宝能系200亿资管计划存平仓风险|晚安心愉

· 中钨高新终止重组议案未获通过 将与投资者进一步沟通

· 《焦急的罗曼史》第8、9集预告!下周的播出有点甜有点虐啊!

· 本田思域4月销量突现下滑,加价销售、质量问题成导火索

· 马云三次高考,被数十位投资人回绝,逆袭后想拍戏又被拒绝!

· 高速电磁炮重新启动巨舰时代,初速达舰炮3倍射程超160公里

· 除了顺产和剖腹产,还有这两种分娩方式

· 这些水果被“动过手脚”,严重的竟会致癌,你千万不要吃!

· 孔蒂:蓝军非常享受争冠压力,我们根本不慌

· 鹿晗退出跑男录制原因是什么 被质疑用替身获节目组回应

· 新款自由光上市,样子变丑了

· 中泰证券:钢铁行业基本面仍较乐观

· “一带一路”上,央企把钱投向了这些项目

· 辉山乳业被勒令停牌,中银澳门催收5000万美元融资款

· 便利店持续“打劫”咖啡馆:抢产品、抢顾客、还要抢空间体验

· 俄乌外长“同步”访美 彭斯称支持乌主权及领土完整

· 美女套丑男(民间故事)

· 今天是5月11日 一心一意的祝福送给你!快打开,越快越好

· 还记得第一个玩过的跑酷游戏吗?《神庙逃亡》的尽头是什么?

· 东莞最大范围暴雨就要来了!明后天有大暴雨 周日母亲节局部有阵雨

· 脑洞大开,那些屌炸天的生活发明!

· 强如吉诺比利!为什么直到57顺位才被选中?

· 周黑鸭:鸭的,虾搞!但我喜欢

· “青年科学家进校园”巡回演讲点燃道县学子梦想

· 为什么人类要上火星

· 杭州一学校规定开家长会私家车不得进校园:避免引发学生攀比

· 深圳成就了我,我要对它有所表达

· 倒车时,你更喜欢用倒车雷达,还是倒车影像?

· 东亚剧变 台湾地区别再自怜

· 王者荣耀:最强几个上单,都有能压爆一切英雄的完美实力你可知道

· DNF:现在有多少真正意义上已经消失的BOSS?

· 秦始皇死前,三件离奇天象怪事预示秦朝命运,数千年来解释不清

· “草长水清,我就欢喜”——记坚守孤岛25年的科学家于丹

· 俄罗斯研制新半导体 厚度是头发五千分之一

· 聚焦媒体和娱乐内容自动生成领域,印度初创公司Absentia VR计划推出Norah AI

· 6个涨停后津膜科技股东减持2.7亿元 今日换手率高达34.64%

· 销毁法珍稀植物标本 澳“粗暴”检疫摊上事

· 90%的家庭在宝宝学走路这件事上,都犯过这四个错误

· 奶奶给宝宝买了一堆图画书,一月后妈妈看到宝宝心痛掉泪

· 唯美语录,你背叛了天长地久,我逃离了来日方长

· 每个人心中都装着一个人

· 本轮下跌的历史参照物

· 情怀永生 “最初的苹果零售店”在这里“复活”

· 九旬老人无儿无女,托付邻居料理后事与妻子同葬,百万家产赠恩人

· 悲剧了!辉山乳业连遭三记闷棍

· 开挂的印度人,1枚火箭带104颗卫星上天,中国天宫表示呵呵

· 科米告别信曝光 知情人士透露解雇背后两大真实原因

· 7个月男宝宝还不会翻身!竟睡觉掉到床下肿了个大包宝妈好烦恼!

· 全体戒烟?戒烟成主播圈新潮流

· 席慕容经典语录 遇见你,最美的时刻

· 刘晓博|深圳和香港,正谋划一件大事!

· 5款创意游戏!“颜值”与“创意”同在线

· 科曼:最后一周时间,巴克利必须决定未来

· 吴京叹两次喝酒都被新疆哥们干翻,于是《战狼3》要来这儿拍

· 从华为到金立 为何尴尬的总是国产高端机

· 1分钟熟知重庆驾校考驾照流程

· 明日背水一战,火箭该如何面对?保持死亡五小,放弃高分赢球?

· 中国氢弹试爆成功,某国总统大发雷霆,下了一个死命令

· 停车平台“ETCP”推出ETCP单车,这是要转行了还是要造福停车用户了?

· 足坛恶人最佳阵容,组成一个队人家都不用打了

· “包赚不赔”成往事 千份A股定增三成被套

· 德国二战时候军工有多强,看了这个你就明白……

· 高血脂不仅仅是管住嘴就可以了,还需要这些方法才能降低血脂

· 五岁患癌女童人生的最后三天,爸妈只希望她快点死去

· 目客|深晚独家专访“现代镖师”,解密跨境武装押运全过程

· 休完产假准备回公司上班,老板让同事打来电话:你不用来了

· 第一个狠甩谢贤的女人 香港最伟大的演员 为慈善当众向那英下跪

· 美制M1A1主战坦克。

· 老照片中的大舒城!

· 论量子力学与相对论的结合

· 全新大众POLO无伪装谍照曝光,新车预计今年就发布

· 叙利亚民主力量宣布恢复对IS大本营拉卡的进攻

· 混沌一树擘天地,少年坐火车硬座,有了一场奇遇

· 马竞金童11场欧冠主场0进球 硬干C罗却被神之蔑视遭羞辱

· 热辣鲜香 盘点贵州让人食指大动的华夏吃货之旅

· 卖房送独女留学,你到底是想放风筝,还是养只鸟?

· 杨振宁:把中学生送去美国教育是件非常危险的事情

· 大姐,有监控还敢偷?

· 《向往》导演赞陈赫是中国艺能感最强之一,原来陈赫的懒只是人设

· 《烈火如歌》最新剧照 全是《三生三世》杨幂的人马 果然有气势

· 方大炭素最高涨7% 创5个月新高!机构关注游戏行业(附股)

· 虞书欣,如精灵般的俏丽灵动,清纯可人,穿搭起来果然青春靓丽

· 她曾是玉女红星,为罗大佑放弃工作,离婚没要一分钱

· 沃尔沃销量增长太猛烈 宝马奔驰压力倍增

· 优酷总裁杨伟东向腾讯受伤女员工致歉:竞争回到业务

· 机器的魅力,只有工科生能看懂

· 发改委确认成品油价格下调 加满一箱油少花9块多

· 连曝极右丑闻!德军方搜查军营纳粹物品

· 泰国副总理表示愿参与“一带一路”合作

· 王者荣耀团战需要谨记的五大重点,知道的玩家最少也在铂金以上

· 论套路 我只服小包总《欢乐颂2》小包总花式撩安迪

精彩图片