为什么没有东西能够超过光速?

小智雅汇   2017-10-13 09:11

We are told that nothing can travel faster than light. This is how we know it is true.

It was September 2011 and physicist Antonio Ereditato had just shocked the world. The announcement he had made promised to overturn our understanding of the Universe. If the data gathered by 160 scientists working on the OPERA project were correct, the unthinkable had been observed.

2011年9月,物理学家安东尼奥伊·雷迪塔托震惊了世界。他宣布的消息将彻底改变我们对宇宙的理解方式。如果参与OPERA项目的160名科学家收集的数据正确的话,说明我们已经成功观测到了不可能发生的事情。

Particles – in this case, neutrinos – had travelled faster than light.

According to Einstein's theories of relativity, this should not have been possible. And the implications for showing it had happened were vast. Many bits of physics might have to be reconsidered.

这件事就是:粒子(这里指的是中子)的运动速度超过了光速。

根据爱因斯坦的相对论,这应该是不可能发生的。假如这件事成真,它的影响也十分巨大,许多物理学知识都必须予以重新考虑。

Although Ereditato said that he and his team had "high confidence" in their result, they did not claim that they knew it was completely accurate. In fact, they were asking for other scientists to help them understand what had happened.

虽然伊雷迪塔托和他的团队称,他们对自己的研究结果抱有“高度自信”,但他们从未说过自己的结果是完全精确的。事实上,他们还邀请了其他科学家来帮助他们弄清究竟发生了什么事情。

In the end, it turned out the OPERA result was wrong. A timing problem had been caused by a poorly connected cable that should have been transmitting accurate signals from GPS satellites.

There was an unexpected delay in the signal. As a consequence, the measurements of how long the neutrinos took to travel the given distance were off by about 73 nanoseconds, making it look as though they had whizzed along more quickly than light could have done.

最后他们发现,OPERA项目的结果是错误的。由于一处电缆接触不良,从GPS卫星传来的信号出现了延迟。结果中子的运动时间缩短了73秒,看上去就好像比光速还快一样。

Despite months of careful checks prior to the experiment, and plentiful double-checking of the data afterwards, this time the scientists got it wrong. Ereditato resigned, though many pointed out that mistakes like these happen all the time in the hugely complex machinery of particle accelerators.

虽然科学家们在实验之前进行了好几个月的细致检查,在实验之后也进行了反复核查,但这一次,科学家们还是犯了错误。虽然很多人指出,在粒子加速器这么复杂的机器中,这样的错误总会发生,但伊雷迪塔托还是引咎辞职了。

Why was it such a big deal to suggest – even as a possibility – that something had travelled faster than light? And are we really sure that nothing can?

为什么人们都将“某种东西比光速还快”这件事看得这么严重呢?我们真就那么确定没有东西能超过光速吗?

为什么没有东西能够超过光速?

We cannot go as fast as light ↑

Let's take the second of those questions first. The speed of light in a vacuum is 299,792.458 km per second – just shy of a nice round 300,000km/s figure. That is pretty nippy. The Sun is 150 million km away from Earth and light takes just eight minutes and 20 seconds to travel that far.

让我们先来看看第二个问题。真空中的光速是每秒299792.458公里,约等于每秒30万公里,速度非常之快。太阳距地球约1.5亿公里,光只需要8分20秒就能跑过这段距离。

Can any of our own creations compete in a race with light? One of the fastest human-made objects ever built, the New Horizons space probe, passed by Pluto and Charon in July 2015. It has reached a speed relative to the Earth of just over 16km/s, well below 300,000km/s.

我们造出来的东西能与光速相提并论吗?新视野号空间探测器是人类造出的速度最快的东西之一,相对地球的运行速度只有每秒钟16公里,比每秒钟30万公里差了一大截。

However, we have made tiny particles travel much faster than that. In the early 1960s, William Bertozzi at the Massachusetts Institute of Technology experimented with accelerating electrons at greater and greater velocities.

Because electrons have a charge that is negative, it is possible to propel – or rather, repel – them by applying the same negative charge to a material. The more energy applied, the faster the electrons will be accelerated.

但粒子的速度可以比这快得多。上世纪60年代初,麻省理工学院的威廉·贝托齐开展了一项实验,不断给电子加速,使电子的速度越来越快。由于电子带负电荷,只要使一块材料带上同样的负电荷,就能把电子向前推出去。施加的能量越高,电子的速度也就越快。

You might imagine that you just need to increase the energy applied in order to reach the required speed of 300,000km/s, but it turns out that it just is not possible for electrons to move that fast. Bertozzi's experiments found that using more energy did not simply cause a directly proportional increase in electron speed.

Instead, he needed to use ever-larger amounts of additional energy to make ever-smaller differences to the speed the electrons moved. They got closer and closer to the speed of light but never quite reached it.

你可能会以为,要想达到每秒钟30万公里的速度,只要增加所施加的能量就可以了。但我们发现,电子是不可能达到那么高的运行速度的。贝托齐的实验显示,增加能量之后,电子的运行速度并不会简单地成比例增加。到了后来,就算施加了大量能量,电子的速度也只能加快一点点。这一速度会不断接近光速,但永远无法真正追上光速。

Imagine travelling towards a door in a series of moves, in each of which you travel exactly half the distance between your current position and the door. Strictly speaking, you will never reach the door, because after every move you make you still have some distance still to travel. That is the kind of problem Bertozzi encountered with his electrons.

But light is made up of particles called photons. Why can these particles travel at the speed of light when particles like electrons cannot?

想象一下,你正在朝一扇门走过去,每次走的长度都是你现在和门之间距离的一半。严格来说,你永远也走不到门跟前,因为每走一步之后,你和门之间仍然存在一定距离。贝托齐的电子加速实验遇到的也是类似的问题。但光也是由一种叫做光子的粒子构成的。为什么这些粒子就能达到光速,电子之类的粒子就不行呢?

为什么没有东西能够超过光速?

New Horizons visited Pluto in 2015

"As objects travel faster and faster, they get heavier and heavier – the heavier they get, the harder it is to achieve acceleration, so you never get to the speed of light," says Roger Rassool, a physicist at the University of Melbourne, Australia.

"A photon actually has no mass," he says. "If it had mass, it couldn't travel at the speed of light."

“物体的运动速度越快,它就会变得越重;而物体变得越重,要想加速也就越难,因此你永远不可能达到光速。”墨尔本大学的一名物理学家罗杰·拉索尔说道,“光子实际上是没有质量的。如果它有质量,也就不可能以光速运行了。”

Photons are pretty special. Not only do they have no mass, which gives them free reign when it comes to zipping about in vacuums like space, they do not have to speed up. The natural energy they possess, travelling as they do in waves, means that the moment they are created, they are already at top speed.

光子是一种非常特殊的粒子。不仅因为它们没有质量,让它们在宇宙这样的真空中可以无拘无束地自由穿梭,还因为它们根本不需要加速。光的能量借助波的形式传播,这意味着从光子诞生的那一刻起,它就已经达到了最高速度。

In fact, in some ways it makes more sense to think of light as energy rather than as a flow of particles, though truthfully it is – a little confusingly – both.

事实上,在一些方面把光想像成能量而不是粒子的流动更能被理解,虽然实际上―有点困惑―它两者都是。

Still, light sometimes appears to travel more slowly than we might expect. Although internet technicians like to talk about communications travelling at "the speed of light" through optical fibres, light actually travels around 40% slower through the glass of those fibres than it would through a vacuum.

不过,光有时似乎传播得比我们认为的要慢一些。虽然互联网技术人员喜欢说信息“以光速”在光纤中传播,但光在光纤的玻璃中传播的速度其实比在真空中慢40%。

In reality, the photons are still travelling at 300,000km/s, but they are encountering a kind of interference caused by other photons being released from the glass atoms as the main light wave travels past. It is a tricky concept to get your head around, but it is worth noting.

Similarly, special experiments with individual photons have managed to slow them down by altering their shape.

事实上,这些光子的运行速度仍然是每秒钟30万公里,但在光波穿过玻璃时,会从玻璃原子中释放出其它的光子,对之前的光子造成一定干扰。这一点可能很难理解,但值得我们去注意一下。与之类似,科学家在实验中通过改变光子的形状,成功减慢了单个光子的速度。

为什么没有东西能够超过光速?

Optical fibers carry information ↑

Still, for the most part it is fair to say that light travels at 300,000km/s. We really have not observed or created anything that can go quite that quickly, or indeed more quickly. There are a few special cases, mentioned below, but before those, let's tackle that other question. Why is it so important that this speed of light rule be so strict?

不过,在绝大多数情况下,我们还是可以说光速就是每秒30万公里。我们还未观察到过、或者造出过能与光速媲美、甚至超过光速的东西。下文中提到了一些特殊的案例,但在此之前,让我们先来解决另一个问题:为什么光速这么重要呢?

The answer lies, as so often in physics, with a man named Albert Einstein. His theory of special relativity explores many of the consequences of these universal speed limits.

One of the important elements in the theory is the idea that the speed of light is a constant. No matter where you are or how fast you are travelling, light always travels at the same speed.

But that creates some conceptual problems.

答案与一位叫做阿尔伯特爱因斯坦的男人有关。他的狭义相对论对这一速度上限引发的许多后果进行了探讨。该理论最重要的观点之一是,光速是一个常量。无论你身在何处,无论你速度多快,光传播的速度始终保持不变。但这也带来了一些概念上的问题。

Imagine shining light from a torch up to a mirror on the ceiling of a stationary spacecraft. The light will shine upwards, reflect off the mirror, and come down to hit the floor of the spacecraft. Let's say the distance travelled is 10m.

想象一下这样的场景:手电筒的光柱投射到一艘静止的宇宙飞船的天花板上。光线先是朝上,被镜子反射回来,然后投射到地板上。假设光线经过的距离为10米。

Now let's imagine that the spacecraft begins travelling at a hair-raising speed, many thousands of kilometres per second.

When you shine the torch again, the light will still seem to behave as before: it will shine upwards, hit the mirror, and bounce back to hit the floor. But in order to do so the light will have to travel diagonally rather than just vertically. After all, the mirror is now moving quickly along with the spacecraft.

然后再想象一下,宇宙飞船开始以超高速运行,速度为每秒数千、甚至数万公里。你打开手电筒之后,光线的运动方式看上去和之前一样:先是往上走,然后被镜子反射回来,投射到地板上。但由于镜子此时正和宇宙飞船一起高速运行,要实现这样的效果,光线的运动轨迹必须倾斜于地面,而不是垂直于地面。

The distance the light travels therefore increases. Let's imagine it has increased overall by 5m. That is 15m in total, instead of 10m.

因此光线经过的距离比之前增加了。假设这段距离增加了5米,光线经过的总距离就变成了15米,而不是之前的10米。

And yet, even though the distance has increased, Einstein's theories insist that the light is still travelling at the same speed. Since speed is distance divided by time, for the speed to be the same but the distance to have increased, time must also have increased.

不过,虽然这段距离增加了,根据爱因斯坦的理论,光速仍然是不变的。速度等于距离除以时间,既然速度不变,距离增加,时间应该也增加了才对。

Yes, time itself must have got stretched. That sounds wacky, but it has been proved experimentally.

不错,时间本身也被拉长了。这听上去很异想天开,但实验已经证实了这一点。

为什么没有东西能够超过光速?

Time can slow down or speed up ↑

It is a phenomenon known as time dilation. It means time travels slower for people travelling in fast-moving vehicles, relative to those who are stationary.

这种现象名叫时间膨胀效应。这意味着对于在高速运行的汽车中的人来说,时间过得比静止时要慢一些。

For example, time runs 0.007 seconds slower for astronauts on the International Space Station, which is moving at 7.66 km/s relative to Earth, compared to people on the planet.

例如,国际空间站相对地球的运动速度是每秒7.66公里,对于宇航员来说,时间比地球上慢了0.007秒。

Things get interesting for particles, like the electrons mentioned above, that can travel close to the speed of light. For these particles, the degree of time dilation can be great.

而套用到粒子身上,事情就更有趣了。比如上文提到的电子,它们可以以接近光速的速度运行。对于这些粒子来说,时间膨胀效应就更明显了。

Steven Kolthammer, an experimental physicist at the University of Oxford in the UK, points to an example involving particles called muons.

牛津大学的一名实验物理学家史蒂文科尔斯海默用渺子举例说明了这一点。

Muons are unstable: they quickly fall apart into simpler particles. So quickly, in fact, that most muons leaving the Sun should have decayed away by the time they reach the Earth. But in reality muons arrive at Earth from the Sun in great numbers. This was something scientists long found difficult to understand.

渺子十分不稳定,很快就会分裂成其它更简单的粒子。按照它们的衰变速度,大部分渺子在离开太阳之后,等到抵达地球时,就应该已经衰变了才对。但事实上,仍有大批渺子能成功抵达地球。长时间以来,科学家一直对这一点感到大惑不解。

"The answer to this puzzle is that the muons are generated with so much energy that they're moving at velocities very near the speed of light," says Kolthammer. "So their sense of time, if you will, their internal clock, actually runs slow."

“原因是渺子在诞生时的能量极其巨大,因此渺子能够以接近光速的速度运行,”科尔斯海默说道,“所以对于它们而言,时间其实放慢了不少。”

The muons were "kept alive" longer than expected, relative to us, thanks to a real, natural bending of time.

渺子之所以能“存活”得比我们以为的更久,靠的就是实际存在的、天然的时间弯曲效应。

为什么没有东西能够超过光速?

Light travels from the Sun to Earth ↑

When objects move quickly relative to other objects, their length contracts as well. These consequences, time dilation and length contraction, are both examples of how space-time changes based on the motion of things – like you, me or a spacecraft – that have mass.

当物体相对于其它物体的运动速度更快时,它们的长度也会收缩。时间膨胀效应和尺缩效应都是时空根据物体的运动状态发生改变的例子。比如你,比如我,比如宇宙飞船,物体只要有质量,就会出现这些现象。

Crucially, as Einstein said, light does not get affected in the same way – because it has no mass. That is why it is so important that all of these principles go hand-in-hand. If things could travel faster than light, they would disobey these fundamental laws that describe how the Universe works.

但爱因斯坦指出,最关键的是,光不会受到这些效应的影响,因为光没有质量。正是因为这一点,这些定律之间的统一才那么重要。如果有什么东西的运动速度超过了光速,它们就会与宇宙运作的基本法则相违背。

That sums up the key principles. At this point, we can consider a few exceptions and caveats.

For one thing, while nothing has ever been observed travelling faster than light, that does not mean it is not theoretically possible to break this speed limit in very special circumstances.

但也有一些例外的现象。首先,虽然我们还没观察到有什么东西能超过光速,但这并不意味着,在非常特殊的情况下,理论上是无法打破光速的限制的。

Take, for instance, the expansion of the Universe itself. There are galaxies in the Universe moving away from one another at a velocity greater than the speed of light.

Another interesting situation concerns particles that seem to be expressing the same properties at the same time, no matter how far apart they are.

This is called "quantum entanglement". In essence, a photon will flip back and forth between two possible states at random – but the flips will exactly mirror the flipping of another photon somewhere else, if the two are entangled.

宇宙膨胀就是一个例子。宇宙中有一些星系,它们从彼此身边逃离的速度就超过了光速。另一个有趣的例子则与粒子有关。这些粒子无论相隔多远,似乎都能同时表达出相同的特性。这一现象叫做“量子纠缠”。从本质上来说,光子可以在两种状态间随机转换,但如果两个光子之间存在量子纠缠的话,其中一个光子的状态将恰好与另一处的光子完全相同。

Two scientists each studying their own photon will therefore get the same results at the same time, faster than the speed of light.

However, in both these examples it is crucial to note that no information is travelling faster than the speed of light between two entities. We can calculate the Universe's expansion, but we cannot observe any faster-than-light objects in it: they have disappeared from view.

As for the two scientists with their photons, while they might achieve the same result simultaneously, they could not confirm the fact with each other any more quickly than light could travel between them.

因此,如果两名科学家各负责观察一个光子,他们就能同时得到相同的结果,而这一速度是超过了光速的。不过,在上述两个例子中,我们必须注意到,信息在两个实体之间传播的速度是无法超过光速的。我们可以计算宇宙的膨胀速度,但我们无法在其中观察到任何超过光速运行的物体,就好像它们从我们的视线中消失了一样。至于那两名研究光子的科学家,虽然他们能同时得到相同的结果,但他们向对方确认这一事实的速度也不可能超过光速。

为什么没有东西能够超过光速?

Galaxies are flying away from us ↑

"This gets us out of any problems, because if you are able to send signals faster than light you can construct bizarre paradoxes, under which information can somehow go backwards in time," says Kolthammer.

There is yet another possible way in which faster-than-light travel is technically possible: rifts in space-time itself that allow a voyager to escape the rules of normal travel.

“这让我们避免了各种棘手的问题,因为如果你发射信号的速度超过光速的话,就可能引发一些诡异的悖论,让信息在时间上出现了倒退。”科尔斯海默说道。不过,从技术层面来讲,还有另一种方法能实现超光速运动:利用时空中本身存在的缝隙,从而避免受到普通运动法则的牵制。

Gerald Cleaver at Baylor University in Texas has considered the possibility that we might one day build a faster-than-light spacecraft. One of the ways to do this might be to travel through a wormhole. These are loops in space-time, perfectly consistent with Einstein's theories, which could allow an astronaut to hop from one bit of the Universe to another via an anomaly in space-time, a sort of cosmic shortcut.

德州贝勒大学的杰拉德克利佛对制造超光速宇宙飞船的可行性进行了研究。一种方法是穿越虫洞。时空中存在一些环状回路,这与爱因斯坦的理论是完全一致的。宇航员可以利用这些捷径,从宇宙中的某一处地方直接跳到另一处去。

The object travelling through the wormhole would not exceed the speed of light, but it could theoretically reach a certain destination faster than light could if it took a "normal" route.

But wormholes might not be available for space travel. What if instead you actively distorted space-time in a controlled way, to travel faster than 300,000km/s relative to someone else?

物体在虫洞中运行的速度不会超过光速,但从理论上来说,它到达目的地的时间的确比光走正常路线所需的时间要短。但我们也许无法利用虫洞进行空间旅行。那么,我们能否以某种可控的方式主动使时空发生弯曲,从而使相对的运动速度超过光速呢?

为什么没有东西能够超过光速?

Wormholes would be handy, if they exist ↑

Cleaver has investigated an idea known as an "Alcubierre drive", proposed by theoretical physicist Miguel Alcubierre in 1994. Essentially, it describes a situation in which space-time is squashed in front of a spacecraft, pulling it forward, while space-time behind the craft is expanded, creating a pushing effect.

克利佛对一种名为“曲速引擎”的概念进行了研究,这一概念是理论物理学家米格尔·阿库别瑞于1994年提出的。从根本上来说,它描述的是这样一种情境:宇宙飞船前方的时空会收缩,将宇宙飞船向前拉去,而与此同时,飞船后方的时空则会膨胀,产生推动效应。

"But then," says Cleaver, "there's the issues of how to do that, and how much energy it's going to take."

In 2008, he and graduate student Richard Obousy calculated some of the energies involved.

"We worked out that, if you assume a ship that's about 10m x 10m x 10m – you're talking 1,000 cubic metres – that the amount of energy it would take to start the process would need to be on the order of the entire mass of Jupiter."

“但问题是,我们怎样才能实现这一点呢?实现它又需要多大的能量呢?”克利佛说道。2008年,克利佛和他手下的研究生理查德·奥伯塞对所需的能量进行了计算。“我们发现,假设飞船大小为10米*10米*10米、即总体积为1000立方米的话,光是启动这一过程所需的能量数量级就与木星的质量相当。”

After that, the energy would have to continue being provided constantly in order to ensure the process did not fail. No-one knows how that would ever be possible, or what the technology to do it would look like.

"I don't want to be misquoted centuries from now for predicting it would never come about," says Cleaver, "but right now I don't see solutions."

Faster-than-light travel, then, remains a fantasy at the moment.

而在启动之后,我们还需要不断供应能量,保证这一过程不会中断。没人知道我们要怎样才能做到这一点,也没人知道这需要什么样的技术。“我可不想预言说这永远不可能成真,结果被后人诟病数百年,”克利佛说道,“但就目前而言,我真不知道怎样才能做到这一点。”因此就现在来说,超光速旅行依然如神话般遥不可及。

But while that may sound disappointing, light is anything but. In fact, for most of this article we have been thinking in terms of visible light. But really light is much, much more than that.

不过先别失望。在本文中,我们考虑的主要是可见光。但事实上,真正的光比这要宽泛得多。

为什么没有东西能够超过光速?

Visible light is only part of the electromagnetic

Everything from radio waves to microwaves to visible light, ultraviolet radiation, X-rays and the gamma rays emitted by decaying atoms – all of these fantastic rays are made of the same stuff: photons.

从无线电波到微波,再到可见光、紫外线、X射线和原子衰变时释放的伽马射线,这些神奇的射线都是由同一种物质组成的——光子。

The difference is the energy, and therefore their wavelength. Collectively these rays make up the electromagnetic spectrum. The fact that radio waves, for instance, travel at the speed of light is enormously useful for communications.

In his research, Kolthammer builds circuitry that uses photons to send signals from one part of the circuit to another, so he is well placed to comment on the usefulness of light's awesome speed.

它们之间的区别在于能量和波长的不同。这些射线加起来,就构成了完整的电磁光谱。无线电波能以光速传播,这对于通讯的用处非常巨大。科尔斯海默在他的研究中搭建了一个电路系统,用光子从电路的一部分向另一部分发射信号。因此他在光速的用途上很有发言权。

"The idea that we've built the infrastructure of the internet for example and even before that, radio, based on light, certainly has to do with the ease with which we can transmit it," he points out.

He adds that light acts as a communicating force for the Universe. When electrons in a mobile phone mast jiggle, photons fly out and make other electrons in your mobile phone jiggle too. It is this process that lets you make a phone call.

“现在的互联网和以前的无线电都是这样的例子,光速为我们提供了巨大的便利。”他指出。科尔斯海默还补充说,光在宇宙中还起到了沟通的作用。当一部手机中的电子振动时,便会释放出光子,让另一部手机中的电子也开始振动。你打电话的时候,就会经历这样的过程。

The jiggling of electrons in the Sun also emits photons – at fantastic rates – which, of course, produces the light that nourishes life on Earth.

Light is the Universe's broadcast. That speed – 299,792.458 km/s – remains reassuringly constant. Meanwhile, space-time is malleable and that allows for everyone to experience the same laws of physics no matter their position or motion.

太阳中的电子振动时也会释放出光子,正是它们产生的光线孕育了地球万物。光就像宇宙中的广播节目。光速为每秒钟299792.458公里,这一速度始终保持不变。并且,时空还具有延展性,无论人们身在何方,无论他们正处于怎样的运动状态,每个人都遵循着相同的物理法则。

Who would want to travel faster than light, anyway? The show it puts on is just too good to miss.

不过,谁会愿意运动得比光速还快呢?那场景一定太美,让人不容错过。

By Chris Baraniuk

内容推荐
更多阅读

· 詹姆斯陷入十几年前怪圈,骑士失利之夜最尴尬的究竟是谁!

· 詹姆斯虽无缘MVP,但这回应不愧为联盟第一人,境界堪比乔丹!

· 八一辽宁将迎关键一战 B组大混战后能否重新洗牌?

· 2017 Motogp法国利曼站—维纳勒斯夺冠重夺车榜第一名

· 武痴一身硬气功练就传说中的三花聚顶,曾公开挑战泰森

· WWE黑羊真被罗曼大帝弄伤了!黑羊接受手术,手臂插入多根细管

· 休斯顿火箭队本赛季告别会图集,期待下赛季,需加盟一巨星

· 新婚燕尔就是甜蜜啊 吴敏霞夫妇回沪如胶似漆羡煞旁人

· 火箭大副家遇横祸 遭入室盗窃损失约5万美元

· 特朗普首访沙特签下千亿美元大单

· 实拍那些被海水冲上岸的东西,有的捡到后可以一夜暴富

· 民调:马克龙有望赢得议会选举

· 直击:日本尸体旅馆服务,一晚要价150美元,房间供不应求

· 比你聪明的人比你还勤奋:他27岁获英国大奖

· FX112财经:美国政治不确定性而涨势艰难

· 盘点世界上最干旱地区

· 古迹:聊城市沙镇王汝训墓

· 揭秘罗马帝国为何骤而陨落?

· 六次担任斯诺克世锦赛决赛裁判!杨·沃哈斯是一位骄傲的荷兰人

· 揭护眼台灯:售价差数千 抽检173批次仅3个达标

· 福特将2020年推出首款纯电车型 或基于ESCAPE(翼虎)打造

· 德约讲述与阿加西合作始末 “他已经开始指导我了”

· 体育题材电影《摔跤吧!爸爸》引发热议

· 颠3下0.1秒绝杀!本季最神1幕!

· 上海替补中锋成自由市场香饽饽 新合同年薪或至少200万?

· [言论] Kkoma:想把下路选为隐藏的MVP

· 中国最具天赋后卫提出离队 引多支CBA球队疯抢!

· 劳燕分飞!体坛天价离婚费,乔丹1.68亿美元不是第一

· 如此炫酷的球星对决画面,会是你卧室墙壁上最珍贵的海报吗?

· 火箭夏季应交易阵中一人,全明星加盟全靠这笔操作才行

· 小托马斯今夏恐成为筹码,只为吸引他来加盟?

· 速报|利物浦7500万欧报价姆巴佩 温格将续约2年

· 世乒赛就是马龙和樊振东的二人转?刘国梁认为千万不能小看他!

· 华夏幸福三大数据领跑全中超 战术大师!佩工狂甩斯帅几条街

· 柯洁如此回应那些等着嘲讽他的人,一句话解释输棋也要去的理由

· 柬地方选举宣传期开始 各政党上街积极拉票

· 婚礼举行到一半墙面突然倒塌,喜事瞬间变悲剧啊

· 它在国内是保护动物,在美国却肆意被猎杀还悬赏5000美元!

· 美国穷人不仇富的12个原因

· 与英拉握手的男人,都会被她的笑容所感染

· 瞅瞅泰国日货洋垃圾摊的小玩意,电子产品、玩具、球星卡都有!

· 实拍最真实的朝鲜农村

· 当地女子纷纷主动下嫁一头牛,阿三的世界不简单

· 盘点世界上最著名的国家现任君主!真正的非富即贵!

· 晚清官员穿貂皮衣服高清照片:大臣戴黑色镜出场,雍和宫现风衣男

· 张宗昌杀记者,这也算理由!

· 历史告诉我们美国为啥不敢在朝鲜动手,主要是怕老大地位不保!

· 中国历史上有哪些为了宠妃废掉太子的国君或皇帝?

· 这家从潮州开来的小吃店,连蔡澜都说好吃!

· 《寻味博山菜》系列 绿豆肘子

· 盘点秦时明月中的美女们,你觉得还差哪一个?

· 图虫风光摄影:即墨雄崖所

· 这个小国的小孩没有父母,因为他们已经死于非命

· 十七年法甲首冠,摩纳哥办夺冠庆典

· 轰炸机世界里你死我活的较量:大型轰炸机技术,美俄究竟是谁的好

· 汉中市区联合举行第二十七次全国助残日活动

· Angelababy:黄晓明才是真爱,其他只是玩玩

· 皇马夺冠,拉莫斯玩的嗨!皇马球迷怒怼苏醒!

· 苏宁锋霸被打脸:2.9亿顶级外援证明什么叫职业?

· 勇士3-0马刺横扫在望,球迷直言:打败马刺的不是勇士

· 再闹发布会!齐达内已控制不住马塞洛、巴斯克斯们!香槟浴!

· 比甲冠军向中超土豪公开索要巨款!为比甲金靴标价1.5亿元!

· 国青U19新疆小将叶尔凡 世界波凌空倒钩破门惊艳全场

· 意大利网球公开赛 爆冷淘汰纳达尔 蒂姆报仇只花七天

· 意甲-尤文3-0提前夺冠 AC米兰3-0重返欧战 国米3-1

· 菲律宾三描礼士省华裔官员被控挪用公款

· 王室风云:便宜也有好货 凯特这对600元耳环瞬间卖光

· 170520 张杰纽约开唱前出席媒体见面会 称将在此站演出挑战“最高音域”

· 美国一大学医学院下面:藏了7000具遗体

· 英国一位91岁老奶奶无照驾驶长达75年却没有警察敢开她罚单

· 习近平会见巴基斯坦总理谢里夫

· 镜头下:1967年,朴槿惠15岁时的韩国

· 王者荣耀:5月22日-5月28日限免英雄,法师一姐登场

· 此人乃清末的中兴之臣之首!待人处世为什么引人深思?

· 古代有一人,就在这座桥上,学习别人走路,最后爬着回了家

· 全面均衡无短板 斯巴鲁森林人性能测试

· 詹姆斯怒怼记者!骑士为何被逆转?看赛后他和泰伦卢怎么说

· 揪心!C罗遭飞铲腿被划出口子 10厘米血痕明显

· 韩媒豪言韩国体育领先中国20年?网友揭穿真相,狠狠打脸韩媒!

· 意足协主席:我们需要米兰双雄

· 在WWE你千万不要让塞纳和兰迪组队,否则后果太恐怖!

· 女排另一王牌全运持续低迷!被朱婷彻底盖过,郎平建议不听

· 火箭今年夏天梦中引援对象,看,他们穿箭衣很帅吧!

· 皇马动真格了!银河战舰真核归位+佛爷钦点,双料冠军燃爆伯纳乌

· 视频|乔治小王子踩到小姨4万英镑的婚纱被凯特训惨了

· 把照片做成漫画书,描述欧洲的裂痕

· 中国与格鲁吉亚两国政府签署自由贸易协定

· 为了纪念第一次世界大战,这个城市创造了一个强大的临时冰纪念碑

· 明明可以靠脸吃饭,21岁的他却闭门苦练3年成就了自己!

· 这5吨“白色弯钩”价值千万美元,菲律宾却当场高调销毁

· 美国加州最美丽的海港---圣地亚哥

· 在加拿大:给猪喂水可判10年!

· 国界线两侧国与国之间的对比:差距一目了然

· 北境王者现世!Efuture问鼎MEST北京赛区

· 中企超快速度吹填扩建马尔代夫机场,或获准买岛建基地

· 大家恼的不是熊孩子,是在背后撑腰的熊大人

· 河北省邯郸市武安市气象台发布雷电黄色预警

· 刘亦菲新作《烽火芳菲》在丹麦展映 受最高礼遇

· 蔡枫华曾红过谭咏麟,瞧不起张国荣,说错一句话被封杀落魄至今

· 兹韦列夫首夺大师赛冠军进TOP10 踩在巨人肩膀上法网可期

· 神迹P图,当nba球星遇到了年轻时的自己,会发生什么?

· 英超-曼城5-0客胜沃特福德,锁定联赛第三

· 冯天薇瞄准世锦赛单打奖牌

· NBA 老巴开释:詹皇再一冠 地位追上Kobe

· 四大分卫最飘逸的男人!看看麦蒂魔术时期的投篮有多美如画!

· 别光吐槽中国游客不文明,看看日本30年前是怎么做的

· 阿拉木图成为最吸引俄罗斯游客的独联体国家城市之一

· 直击乌克兰泼水节的现场:美女们成为了“攻击”对象

· 八家企业对沙特-埃及电网互连进行技术投标

· 实拍朝鲜女士兵,热情打招呼,对中国感到很新鲜

· 看看朝鲜的课本什么样?

· 英拉人美心善是位人才

· 埃及供应部要求糖和大米在包装上明码标价

· 一组实拍照揭秘全球最美第一夫人到底有多漂亮?

· 恶魔城精神续作《血污:夜之仪式》公布新角色

· 被后世描述为暴君的千古一帝秦始皇,却是唯一不杀功臣的帝王

· 汉初卖儿卖女 以道治国富国 支撑武帝军事雄起

· 做试管婴儿前做好这五件事,保证一次就当妈

· “奥数择校”何以成了“打不死的小强”

· 本周晴雨相间,周末再冲刺30℃,上海或已于5月18日入夏

· 迪丽热巴将退出《奔跑吧》?其他成员纷纷响应要离开?

· 虐狗又虐胃,千万不要深夜独自一人看这部剧

· 反超GPU:微软提出在CPU上高效解码的神经机器翻译模型

· 不敌升班马航体已现下课声 建业老板赛后鼓励贾秀全

· 中国田径后继有人啦!不只是苏炳添,还有他?

· 高洪波带队中甲两连胜 武汉卓尔已后悔为省钱当初没请他来!

· 世青赛综述:韩国完胜,阿根廷、德国尝败绩

· 詹姆斯:我今天不在状态

· 德尔波特罗支持费德勒退赛法网 相信其复出后很难被击败

· 皇马内讧!C罗发声力挺西班牙金童直指大圣,佛爷一决定暗藏玄机

· 泰国女排队长大婚,离开北汽女排的加提蓬独身出席,未见婚妻冯坤

· 赖俊豪伤退,浙江队热身赛22分惨败西班牙球队

· 外援遭“欠薪”逃回澳大利亚?辽足称账号出错欲付现金遭拒

· 特朗普与拉夫罗夫和基斯利亚克会面组图

· 首飞宇航员杨利伟现身世界华人炎帝故里寻根节 有图为证

· 男子疑似游行中行窃 被泼油点燃

· 英国夫妻挑战10万英镑建房屋,最终失败却很高兴

· 光头党 俄罗斯的一朵奇葩

· 旅游发现最美女总理对首饰搭配不仅在意而且很在行

· 镜头下真实的朝鲜学生的生活

· 伊朗女摄影师下的伊朗人:白天严肃,私下疯狂

· 直击:“连体婴儿”被医生分开的全过程

· 直击:6个月婴儿体内禁锢着的21岁男孩,每天无数人前来参拜

· 美国女强人希拉里22岁时的一组老照片

· 直击奥巴马的特殊癖好:动不动就脚踩办公桌,皮鞋磨破仍舍不得换

· 汉朝开国功臣,韩信被杀,有哪些疑点重重?

· 历代皇帝都很敬重他,朱元璋却是另类,不让他的后人当官!

· 从《庄子》故事看庄子

· 最早一批彩色照片,记录下的封建帝制被推翻前的中国

· 新生儿头顶脏脏的一块块的痂是什么?要怎么处理干净?

· 做男人要性福 看看外国人都吃什么壮阳补肾

· 肚子总胀气,调理肠胃就指望它了

· 旷世绝版幽默高冷说说

· 看了他们——唤醒了我们

· 地球人搬家首选 比邻星b可能适合人类生存

· 扬州一男子抢劫后潜逃25年 被抓时身家数百万

· 一加新品手机5遭CEO曝光 信息量竟然这么"大"

· 范斌去执教福建王哲林遭殃?当年国青兵谏大王按了血手印!

· 马努,请别让我们的青春散场

· 5公里才是跑步的关键距离!

· 热刺凯恩帽子戏法惨遭名宿泼水,他还称不上是世界级!

· 山西足协杯赛太原赛区落幕 东瑞创意街队获冠军

· 中国女将在日本川崎创标枪亚洲新纪录

· 乐福:我们让胜利从手上溜走了

· 欧冠,我们回来了

· 又一个哥伦比亚国脚前锋有望赴中超!意甲队9号解约金2.2亿元

· 中超第一水货又丢空门了!7场比赛只进2球,两项数据创倒数第一

· 刘国梁也早恋,女友被迫离开国家队赴日本,爱情长跑14年

· 詹姆斯谈落选mvp:我想拿总冠军

· 深圳佳兆业残阵平强敌

· 上海时装周刘翔的造型惊艳全场,女排姑娘受青睐,傅园慧才是亮点

· 图说|是比赛也是一场旅途,击剑让他们成为朋友

· 胖奥与贝爷的荒野求生之旅!奥尼尔:我不想吃胎盘啊!

· 俄专家热议中国航母优缺点,优点大于缺点,我们要自信比库兹号强

· 民调:56%的日本人称有必要在宪法中写明自卫队

· 谁会想到这两国竟在联合搅局南海?当年那顿打看来还不够狠!

· 美贸易代表:美国不会重返TPP 望与亚洲签双边协定

· 此国被美国解除制裁仍坚决反美,与日本结仇,却大力支持中国

· 世界上最强大的四个伊斯兰国家

· 国界线两侧,一边是越南,一边是柬埔寨

· 镜头下的朝鲜现代化生活,朝鲜人优越感十足

· 部落赖以生存的河水被抽干,5年来已死数千孩子

· 其实很多在苏东坡身上的的逸事很多都是后人杜撰的

· 中国历史上的一朵奇葩,竟说“为后不如为娼”

· 真实的“孙悟空” 居然被皇帝活埋七日竟然不死

· 原创诗歌:梦

· 刘亦菲带家人外出吃饭,生父首曝光

· 辽宁省公安厅正式受理袁诚家夫妇提出的37亿国家赔偿申请

· 无人机只能航拍?老外却用无人机做这些更疯狂的事

· 穿越北美(3)福特F-350:世界很大很野,你需要靠谱的闯伴

· 壕!C罗也是炫富达人 他靠勤奋成就自己!

· 博尔特为好友送别当场痛哭 两人共历车祸

· 绿军陷入绝境看谁?一小将交出27+7,别忘了他的模板是威少

· 炸裂!科勒又有新招搞骑士?太空虚她花百万美金找TT度蜜月!

· 德约科维奇确认:阿加西是新教练

· 小刺客寻专家研究手术可能 LBJ:祝贺他这成功1季

· 临沂兰山区体育工作办公室到博兴考察交流体育工作

· 重磅!皇马8千万天王一行为铁心叛逃曼联 传奇巨星狠批齐达内

· 中国队0:3惨败排名倒数第一,韩国梅西却正在世界杯大杀四方!

· NBA历史状元签前五排名,詹姆斯仅排第五?

精彩图片